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Abstract
We introduce a right inverse for the annihilation operator which appears in the
factorization of associated hypergeometric-type operators. This makes possible
the definition of generalized coherent states for the associated eigenfunctions.
These generalized coherent states satisfy the relevant properties, i.e., label
continuity, overcompleteness, temporal stability and action identity required to
establish a close connection between the quantum and classical formulations
of a given physical system.

PACS numbers: 03.65.−w, 02.30.Ik

1. Introduction

Coherent states continue to be at the core of many investigations [1–5]. A good compilation
of relevant references on this topic is available in recent works by Antoine et al [6, 7]. Indeed,
coherent states were first introduced in 1926 by Schrödinger who considered special quantum
states that were particularly adapted for studying the quantum-to-classical transition. The
term coherent was introduced in the 1960s by Glauber [8], Klauder [9], Sudarshan [10] and
others, in the context of quantum optical description of coherent light beams emitted by
lasers. The coherent states (CS) directly related to the canonical commutation relations were
applied originally to the harmonic oscillator system. It was then noted by Gilmore [11] and
Perelomov [12], independently, that CS were in fact closely related to a representation of the
underlying group, namely, the Weyl–Heisenberg group. Most of the interesting properties
of those canonical CS derive from the square integrability of that representation. This leads
to the extension of the concept of CS for a number of Lie groups with square integrable
representations. Today CS are widely used in different fields of physics and mathematics
[13–15], and in several applications [16, 17]. In fact, there exist various definitions of CS.
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Recently, Aleixo and Balantekin [18] have pointed out three main definitions. The first one,
often called Barut–Girardello CS [19], assumes that the CS are eigenstates with complex
eigenvalues of an annihilation group operator. The second definition, often called Perelomov
CS [12], assumes the existence of a unitary z-displacement operator, the action of which on
the ground state of the system gives the CS parametrized by z, with z ∈ C. The last definition,
based on the Heisenberg uncertainty relation, often called intelligent CS [20, 21], assumes
that the CS gives the minimum-uncertainty value �x�p = h̄

2 and maintains this relation in
time because of its temporal stability. Thus, the first definition makes connection with the
supersymmetry quantum mechanics (SUSY QM).

SUSY QM is essentially the study of partner Hamiltonians which are isospectral, that is,
they have almost the same energy eigenvalues [22–25]. A number of such partner Hamiltonians
verify an integrability criterion known as shape invariance [26]. Although not all exactly
solvable problems are shape invariant, shape invariance, especially in its algebraic formulation,
seems to be the decisive test for the solvability of a given SUSY system. It was shown [27]
that with the shape-invariance condition are associated specific Lie algebras and CS defined
as eigenstates of the annihilation factorizing operator [28–31]. In this connection, Aleixo and
Balantekin [18] have provided a definition of generalized CS for shape-invariant potentials and
showed that these states fulfil the properties of label continuity, resolution of unity, temporal
stability and action identity, required to establish a close connection between classical and
quantum formulations of a given system.

The factorization method [32, 33], initially developed for the Schrödinger operator to split
it into a creation and an annihilation operator, has been now extended to the more generalized
second-order differential operators of mathematical physics. Indeed, in a recent work [34], we
have proved that the common widely used factorization scheme can be extended to the more
general Sturm–Liouville operators. Jafarizadeh and Fakhri [35] have factorized some types of
differential operators and deduced the corresponding shape-invariance relations. Cotfas [36],
following Jafarizadeh and Lorente [37], has provided a way of factorization of associated
hypergeometric-type operators and deduced the corresponding CS. Aleixo and Balantekin
[18] have constructed the generalized CS for shape-invariant potentials using an algebraic
approach based on SUSY QM. Our paper aims at generalizing the work of these authors to
the associated hypergeometric-type operators.

In section 2, we give a brief review of the factorization of associated hypergeometric-type
operators and the construction of the corresponding CS following Cotfas [36]. In section 3,
we provide a generalization of the CS. These states satisfy the standard properties of label
continuity, overcompleteness, temporal stability and action identity. In section 4, some
examples are given. Finally, we end with a concluding section.

2. Brief review of the factorization of associated hypergeometric-type operators

Classical orthogonal polynomials {�n}n�0 satisfy the differential equation [38]

σ(s)�′′
l (s) + τ(s)�′

l(s) + λl�l(s) = 0 (1)

where λl = − 1
2 l(l + 1)σ ′′ − lτ ′, σ and τ are polynomials of at most second and exactly

first degrees, respectively. They are orthogonal with respect to the non-negative weight
function ρ, ∫ b

a

�l(s)�k(s)ρ(s) d(s) = 0 for l �= k, (2)
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where ρ satisfies Pearson’s equation (σρ)′ = τρ, over the interval (a, b), which can be finite
or infinite, and further satisfy

σ(s)ρ(s)sk|s=a = σ(s)ρ(s)sk|s=b = 0 for all k ∈ N.

Differentiating (1) m times and multiplying by κm, with κ = √
σ , we get the eigenvalue

problem Hm�l,m = λl�l,m, where

Hm = −σ
d2

ds2
− τ

d

ds
+

m(m − 2)

4

σ ′2

σ
+

m

2
τ

σ ′

σ
− 1

2
m(m − 2)σ ′′ − mτ ′ (3)

and �l,m = κm�
(m)
l are what we call associated hypergeometric-type functions (AHF). One

can show that these functions are orthogonal with respect to ρ, that is∫ b

a

�l,m�k,mρ ds = 0, l �= k, l, k ∈ {m,m + 1,m + 2, . . .}. (4)

Let Hm be the Hilbert space of {�k,m}k�m (for a given m ∈ N) with respect to the inner
product (4). This space coincides with the Hilbert space

H =
{
ϕ : (a, b) −→ C

/∫ b

a

|ϕ(s)|2ρ(s) ds < ∞
}

.

Let

Am : Hm −→ Hm+1 and A†
m : Hm+1 −→ Hm

be mutually adjoint first-order differential operators defined as in [36]

Am = κ(s)
d

ds
− mκ ′(s) and A†

m = −κ(s)
d

ds
− τ(s)

κ(s)
− (m − 1)κ ′(s).

The operator Hm : Hm −→ Hm factorizes as

Hm − λm = A†
mAm, Hm+1 − λm = AmA†

m.

The operator Hm then fulfils the intertwining relations

HmA†
m = A†

mHm+1 and AmHm = Hm+1Am.

One can deduce the following shape-invariance relations:

AmA†
m = A

†
m+1Am+1 + rm+1, rm+1 = λm+1 − λm = −mσ ′′ − τ ′, (5)

and eigenvalues λl and eigenfunctions �l,m as

λl =
l∑

k=1

rk, �l,m = A
†
m

λl − λm

A
†
m+1

λl − λm+1
· · · A

†
l−2

λl − λl−2

A
†
l−1

λl − λl−1
�l,l (6)

for all l ∈ N and m ∈ {0, 1, 2, . . . , l − 1} where �l,l satisfies the relation Al�l,l = 0.

Introducing, for each m ∈ N, the sequence {|m,m〉, |m + 1,m〉, . . .}, where |l, m〉 = φl,m

‖�l,m‖ ,

we can define a unitary operator Um : Hm −→ Hm,Um|l, m〉 = |l + 1,m + 1〉 and an
annihilation and a creation operator

am, a†
m : Hm −→ Hm, am = U †

mAm and a†
m = A†

mUm.

The operators am and a
†
m are mutually adjoint and act on the state |l, m〉 as

am|l, m〉 =
√

λl − λm|l − 1,m〉 and a†
m|l, m〉 =

√
λl+1 − λm|l + 1,m〉, l � m,

with the algebra[
am, a†

m

] = Rm,
[
a†

m,Rm

] = σ ′′a†
m and [am,Rm] = −σ ′′am (7)
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where Rm = −σ ′′Nm − τ ′, Nm : Hm −→ Hm is the number operator defined as Nm�l,m =
l�l,m. In addition to the commutation relations (7) we have

AmRm = Rm+1Am (8)

and the similarity transformation relation

UmRmU †
m = Rm+1 + σ ′′ for all m ∈ N. (9)

Furthermore, setting for all m ∈ N,

|n〉 = |m + n,m〉, en = λm+n − λm, m ∈ N,

we obtain

am|n〉 = √
en|n − 1〉, a†

m|n〉 = √
en+1|n + 1〉, (Hm − λm)|n〉 = en|n〉. (10)

One can then deduce the CS for AHF as eigenstates of the annihilation operator am

(am|z〉 = z|z〉) [36] in the following way:

|z〉 = N (|z|2)
∞∑

n�0

zn

√
εn

|n〉 N (|z|2) =
[ ∞∑

n=0

|z|2n

εn

]−1/2

(11)

for any z in the open disc C(O,R) with centre O and radius R = lim supn→∞ n
√

εn �= 0 where

εn =
{

1 if n = 0
e1e2 · · · en if n > 0.

3. Generalized coherent states for associated hypergeometric-type functions

This section aims at generalizing the CS (11) on the basis of similarity properties between
the shape-invariance relation of a given system and the AHF. Indeed, as quoted in [18], the
factorization operators A and A†, the ladder operators B±, the shape-invariance parameter
R(a1) can be paired, respectively, to Am,A

†
m, am, a

†
m,Rm or rm+n+1, in [36].

Although the operators Am and am do not possess inverses, one can define for them the
so-called right inverse as [29]

AmA−1
m = 1, ama−1

m = 1.

The right inverse a−1
m of am can be paired with the right inverse B−1

− of B− [29–31] which is
used for the generalization of the CS for shape-invariant systems [18]. In terms of a−1

m , the
CS (11) read

|z〉 = N (|z|2)
∞∑

n=0

(
za−1

m

)n|0〉 (12)

since one can readily show that(
a−1

m

)n|0〉 = 1√
εn

|n〉. (13)

From [am,Rm] = −σ ′′am, we can deduce

amRm = (Rm − σ ′′)am, amf (Rm) = f (Rm − σ ′′)am, (14)

for any analytic function f . The relation (9) can then be generalized as

Umf (Rm)U †
m = f (Rm+1 + σ ′′). (15)
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Using (8) and (15), we obtain

{
f (Rm)a−1

m

}n =
{

n−1∏
k=0

f (Rm + kσ ′′)

}
a−n

m . (16)

Let us now define the generalized CS as

|z;Rm〉 =
∞∑

n=0

{
zf (Rm)a−1

m

}n|0〉. (17)

The relation (17) can be rewritten as

|z;Rm〉 = 1

1 − zf (Rm)a−1
m

|0〉. (18)

From (13) and (16), we deduce the general Glauber form [8] of (17)

|z;Rm〉 =
∞∑

n=0

zn

hn(Rm)
|n〉, (19)

where

hn(Rm) =
√

εn∏n−1
k=0 f (Rm + kσ ′′)

. (20)

Using (14) one can prove that the CS (19) are eigenstates of am, that is

am|z;Rm〉 = zf (Rm − σ ′′)|z;Rm〉, (21)

and verify the condition

{am − zf (Rm − σ ′′)} ∂

∂z
|z;Rm〉 = f (Rm − σ ′′)|z;Rm〉. (22)

Taking into account the fact that Rm is an operator which acts on the states |n〉 as

Rm|n〉 = [−(m + n)σ ′′ − τ ′]|n〉 = rm+n+1|n〉,
we can rewrite the CS (19) as

|z;m〉 =
∞∑

n=0

zn

hn(m)
|n〉, (23)

where

hn(m) =
√

εn∏n−1
k=0 f (rm+n+1−k)

=
√

εn∏n−1
k=0 f ((k − m − n)σ ′′ − τ ′)

. (24)

The properties (21) and (22) become, respectively,

am|z;m〉 = zf (r ′′
m+n+2)|z;m〉, (25)

{am − zf (rm+n+2)} ∂

∂z
|z;m〉 = f (rm+n+2)|z;m〉. (26)

Let us observe that the generalized coherent states (23) verify the label continuity requirement
since the transformation (z,m) −→ (z′,m′) is equivalent to the transformation of states
|z,m〉 −→ |z′,m′〉. Let us examine the realization of the properties of overcompleteness,
temporal stability and action identity for the CS (23) in the following subsections.
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3.1. Normalization

It is easy to prove that the coherent state (23) can be normalized as

|z;m〉 = N (|z|2;m)

∞∑
n=0

zn

hn(m)
|n〉 (27)

where the normalization factor reads

N (x;m) =
[ ∞∑

n=0

xn

|hn(m)|2
]−1/2

. (28)

We can see that the inner product of two CS does not vanish

〈z′;m|z;m〉 = N (|z′|2;m)N (|z|2;m)

N (z′∗z;m)2
. (29)

This shows that the CS are not mutually orthogonal. Considering the normalized form of the
CS (27), the condition (25) becomes

am|z,m〉 = zf (rm+n+2)
N (|z|2;m + 1)

N (|z|2;m)
|z;m〉. (30)

The radius of the convergence of the series which defines the normalization factorN (|z|2;m) is
given by R = lim supn→+∞

n
√

|hn(m)|2. The expressions of hn(m),N (|z|2;m) and R depend
on the choice of the analytic function f .

3.2. Overcompleteness

We assume the existence of a non-negative weight function ω so that the overcompleteness or
resolution of identity holds∫

C

d2z|z;m〉〈z;m|ω(|z|2;m) = 11Hm (31)

where 11Hm is the identity operator in the Hilbert space Hm of the eigenstates of the operator
Hm. Introducing (27) into (31), we can see, after straightforward computation of the angular
integration, that the weight function ω must fulfil the condition∫ ∞

0
dρ ρnW(ρ;m) = |hn(m)|2, W(ρ;m) = πN 2(ρ;m)ω(ρ;m). (32)

Here, we use the polar representation z = r eiφ ; ρ stands for r2. Therefore, the weight function
ω is related to the undetermined moment distribution W(ρ,m), which is the solution of the
Stieltjes moment problem with the moments given by |hn(m)|2. Following step by step [4],
one can determine the measure ω(ρ,m). In the Fourier representation, W(ρ,m) is given
by [18]

W(ρ,m) = 1

2π

∫ +∞

−∞
dt �(t;m) e−iρt , (33)

where

φ(t;m) =
∞∑

n=0

|hn(m)|2 (it)n

n!
. (34)

The explicit expression of W(ρ,m) depends on the choice of the analytic function f and can
be worked out following standard handbooks of tabulated integrals [40–42].
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3.3. Temporal stability

Let us consider the following transformation f (Rm) −→ f̃ (Rm) = f (Rm) e−iα(Rm+σ ′′),
corresponding to f (rm+n+1) −→ f (rm+n+1) e−iαrm+n , α being a real constant. The parameter
hn(m) in (24) becomes hn(m) eiαen . Therefore, the coherent states |z;m〉 can be rewritten as

|z;α,m〉 = N (|z|2;m)

∞∑
n=0

zn

hn(m)
e−iαen |n〉 (35)

where en is the eigenstate of Hm − λm given by en = ∑n
k=1 rm+k .

Let us show that the CS |z;α,m〉 fulfil the temporal stability condition. By temporal
stability, we mean that the time evolution of any coherent state |z;α,m〉 remains coherent.
This condition is satisfied if [2]

e−i(Hm−λm)t |z;α,m〉 = |z;α + ωt,m〉, ω = constant.

We have

e−i(Hm−λm)t |z;α,m〉 = N (|z|2;m)

∞∑
n=0

e−iαen e−i(Hm−λm)t |n〉.

Since

(Hm − λm)|n〉 = en|n〉,
we have

e−i(Hm−λm)t |z;α,m〉 = N (|z|2;m)

∞∑
n=0

e−i(α+t)en |n〉.

Therefore,

e−i(Hm−λm)t |z;α,m〉 = |z;α + t, m〉 (36)

which ends the proof of the temporal stability of the CS |z;α,m〉.

3.4. Action identity

We show now that the CS |z;m〉 satisfy the action identity. That means we can define the
canonical action-angle variables J, ν such as [18]


〈Hm − λm〉 = cJ, c = constant,

∂〈Hm − λm〉
∂J

= ν̇.
(37)

From the conjugate of (25) given by

〈z;m|a†
m = 〈z;m|z∗f ∗(rm+n+2) (38)

we have
〈z;m|Hm − λm|z;m〉

〈z;m|z;m〉 = 〈z;m|a†
mam|z;m〉

〈z;m|z;m〉 = |zf (rm+n+2)|2. (39)

We can define a canonical action variable J = β∗
mβm, where βm = 1

ξ
zf (rm+n+2), with ξ a

non-zero constant, such as

〈Hm − λm〉 = cJ, c = |ξ |2 and
∂〈Hm − λm〉

∂J
= ν̇. (40)

Then,

ν̇ = c, ν = ct + α, α = constant. (41)

Thus, the action identity property is verified. Hence, the generalized coherent states we
introduced for AHF fulfil all the properties needed to establish a close connection with
classical and quantum states.
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4. Examples

In this section, we apply the above formulae to compute the generalized coherent states for the
associated Hermite, Laguerre, Jacobi and hypergeometric functions. The associated Legendre,
Chebyshev and Gegenbauer functions can be deduced as special cases of associated Jacobi
functions.

4.1. Coherent states for associated Hermite and Laguerre functions

For Hermite polynomials, the coefficients σ(x) and τ(x) are

σ(x) = 1, τ (x) = −x. (42)

In the case of Laguerre polynomials, we have

σ(x) = x, τ (x) = α + 1 − x. (43)

In both cases, σ ′′ = 0 and τ ′ = −1. For any analytical function f , the operator f (Rm) acts
on the states |n〉 as

f (Rm)|n〉 = f (1)|n〉. (44)

For any integer l, λl = − 1
2 l(l − 1)σ ′′ − lτ ′ = l, so that en = λm+n − λm = n. Then,

εn = e1e2 · · · en = 1 · 2 · 3 · · · n = n! (45)

Taking into account the fact that σ ′′ = 0, we get
n−1∏
k=0

f (Rm + kσ ′′) = [f (Rm)]n. (46)

From (20), (45) and (46), we obtain

hn(Rm) =
√

n!

[f (Rm)]n
and hn(m) =

√
n!

[f (1)]n
. (47)

The normalization factor (28) becomes

N (|z|2;m) = exp
(− 1

2 |zf (1)|2). (48)

We are now able to derive from (27) the normalized CS for associated Hermite and Laguerre
functions following (44):

|z;m〉 = exp

(
−1

2
|zf (1)|2

) ∞∑
n=0

(
zf (1)√

n!

)n

|n〉. (49)

The inner product of two coherent states gives

〈z′;m|z;m〉 = exp
(
− 1

2f (1)2(|z′|2 + |z|2 − 2z′�z)
)

. (50)

In this case [18], the resolution of the identity is obtained with the measure ω(|z|2,m) =
[f (1)]2/π . Redefining the complex variable z −→ zf (1), we can recover the usual expression
of the bosonic CS [1]

|z;m〉 = exp

[−|z|2
2

] ∞∑
n=0

zn

√
n!

|n〉, (51)

〈z′;m|z;m〉 = exp

[
−1

2
(|z′|2 + |z|2 − 2z′�z)

]
. (52)
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4.2. Coherent states for associated Jacobi and hypergeometric functions

Here, σ(x) = 1 − x2, τ (x) = (β − α) − (α + β + 2)x for Jacobi functions and σ(x) =
x(1 − x), τ (x) = (α + 1) − (α + β + 2)x for hypergeometric functions [39]. In both cases,
σ ′′ = −2 and τ ′ = −(α + β + 2). Denoting µ = (α + β + 2) then λl = l(l + µ − 1), en =
n(2m + n + µ − 1). Thus, we obtain

εn = n!
�(2m + n + µ)

�(2m + µ)
, (53)

where � is the Euler gamma function. Let us set f (Rm) = c, first, a constant function. Then,
n−1∏
k=0

f (Rm + kσ ′′) = cn (54)

and

hn(Rm) =
√

�(n + 1)
�(2m + n + µ)

c2n�(2m + µ)
. (55)

The normalization factor then reads [5]

N (|z|2;m) = [0F1(2m + µ, |z|2)]−1/2 = (�(2m + µ)|z|1−2m−µI2m+µ−1(2|z|))−1/2, (56)

where we take c = 1 without loss of generality. The coherent states read

|z;m〉 = 1√
0F1(2m + µ, |z|2)

∞∑
n=0

zn

√
�(n + 1)(2m + µ)n

|n〉, |z| < ∞ (57)

and the weight function is (see [42] p 196, formula (5.39))

ω(|z|2;m) = 2I2m+µ−1(2|z|)K2m+µ−1(2|z|) (58)

where 0F1 is the confluent hypergeometric function, Iν and Kν are the modified Bessel
functions.

Now, let us choose the function f as

f (Rm) =
√

(−1/2Rm)(−1/2Rm). (59)

Then,
n−1∏
k=0

f (Rm + kσ ′′) =
n−1∏
k=0

√(
k − Rm

2

)(
k − Rm

2

)
(60)

= �
(
n − Rm

2

)
�

(
n − Rm

2

)
�

(−Rm

2

)
�

(−Rm

2

) . (61)

In this case, the coefficient hn(Rm) reads

hn(Rm) =
[
�(n + 1)

�(n + 2m + µ)

�(n + 2m + µ)

�(−Rm)

�(n − Rm)

�(−Rm)

�(n − Rm)

]−1/2

(62)

and

hn(m) =
[
�(n + 1)

�(n + 2m + µ)

�(n + 2m + µ)

�(−(m + n) − ν)

�(n − (m + n) − ν)

�(−(m + n) − ν)

�(n − (m + n) − ν)

]−1/2

=
√

�(n + 1)
(2m + µ)n

[(−m − n − ν)n]2
, (63)
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where ν = µ/2, αn = �(α + n)/�(α) denotes the Pochammer function. The coefficient

hn(m) is in the form
√

(b)n
(a1)n(a2)n

such that a1 = a2 < 0, a1 + a2 − b < 0. Therefore [5], the

general coherent states are defined on a unit circle |z| = 1. The normalization factor is a
constant given in terms of the Gaussian hypergeometric function of unit argument as [5]

[N (1,m)]−2 = �(2(m + ν))

(�(3m + n + 3ν))2
. (64)

The coherent states are then obtained as

|z;m〉 =
[

�(2(m + ν))

(�(3m + n + 3ν))2

]−1/2 ∞∑
n=0

zn√
�(n + 1)

(2m+µ)n
[(−m−n−ν)n]2

|n〉. (65)

For these last states, it appears difficult to prove the resolution of unity, since the identification
of the measure leads to a cumbersome Stieltjes (Hausdorf) moment problem. This difficulty
has been recently pointed out by Appl and Schiller [5].

5. Conclusion

In this paper, we have provided a generalization of coherent states for associated
hypergeometric operators. Almost all of these states satisfy the standard properties of label
continuity, overcompleteness, temporal stability and action identity, corresponding to the
classical/quantum states. We have treated in detail the cases of associated Hermite, Laguerre
and Jacobi hypergeometric functions. It is worth noting that the resolution of unity is quasi-
unattainable for states involving no standard Stieltjes moment problem. This problem remains
open and its resolution should help to enlarge the classes of coherent states for associated
hypergeometric-type functions and should then improve our understanding of the quantum-
to-classical transition state of physical systems.

In this study, the central point in the construction of coherent states remains the choice
of the expression of the holomorphic function f in the definition of the generalized coherent
states (17). The simpler and more appropriate the choice of f is, the easier is the deduction
of the parameter function hn (24), of the normalization constant N (27) and the resolution of
the measure problem.

The hypergeometric operators are recovered from the associated hypergeometric one,
setting m = 0, in their expressions. The same procedure could be applied to the expression
of the corresponding coherent states constructed here using appropriate variable changes (see
(49) and (51)).

Finally, this work presents a general formalism of constructing coherent states for
associated hypergeometric-type functions, which was lacking in the literature. Here and
in previous work related to the investigations of coherent states for second-order differential
operator of mathematical functions, the possibility of constructing coherent states depends on
the answers to the following crucial questions:

(i) Is the second-order differential operator factorizable or not in terms of lowering
(annihilation) and raising (creation) first-order differential operators?

(ii) Do the eigenfunctions of the second-order differential operator satisfy a three-term
recurrence relation?

(iii) Do the identified coherent states satisfy the standard properties of label continuity,
overcompleteness, temporal stability and action identity?
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